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Abstract

This paper is an extended version of Mazzilli et al. (Mazzilli, C.E.N., Soares, M.E.S., Baracho Neto, O.G.P., 1999.
Proceedings of the American Congress of Applied Mechanics, PACAM VI, vol. §, pp. 1589-1592, Rio de Janeiro,
Brazil) which presents a powerful reduction technique in non-linear dynamics based on the combination of finite ele-
ment procedures with a “non-linear” Galerkin method (Zemann, J., Steindl, A., 1996. Proceedings of the 19th In-
ternational Congress of Theoretical and Applied Mechanics, Kyoto, Japan) and non-linear normal modes (Shaw, S.W.,
Pierre, C., 1993. Journal of Sound and Vibration 164 (1), 85-124). Its implementation, in the form of a symbolic
computation code, was carried out for planar framed structures under assumptions of linear elasticity and geometrical
non-linearity, according to the Bernoulli-Euler rod theory (Brasil, R.M.L.R.F., Mazzilli, C.E.N., 1993. Applied Me-
chanics Reviews 46 (11), S110-S117). To obtain the desired drastic reduction of degrees of freedom and the corre-
sponding set of differential equations of motion in explicit form, it is necessary to supply as input data the displacement
components of the pre-selected non-linear normal modes.

Validation tests for non-linear free-vibration problems are shown, considering reduced models of higher hierarchy
and their ability to supply accurate regenerated non-linear normal modes. For non-linear forced vibration problems, a
brief outlook of what is intended to be done is presented. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Important accomplishments have recently been achieved within applied mechanics with respect to the
study of non-linear dynamics for few-degree-of-freedom systems. They included new geometrical, com-
putational and analytical techniques (Thompson and Stewart, 1986; Thompson and Bishop, 1994).
Computational mechanics has also developed efficient procedures for non-linear numerical analysis of
large-size structural models, especially with the finite-element method (Bathe, 1982; Belytschko and
Hughes, 1983).
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Yet, in the engineering practice, comprehensive surveys of non-linear responses are not usually pursued
for large-size non-linear systems (Symonds and Yu, 1985; Fanelli, 1991), because most of time engineers are
neither convinced of their importance nor have the means to perform them. In fact, extension of techniques
from lower to higher phase-space dimensions seems to be unfeasible. What appears to be promising is the
opposite, i.e., the reduction of typical large-size engineering models to a manageable small size, by taking
advantage of modern non-linear modal analysis and, possibly, of computational techniques for location of
invariant manifolds and their tangencies (Thompson and Bishop, 1994).

The technique proposed herewith may represent a remarkable progress towards this goal. It combines
the finite-element analysis and a non-conventional mode superposition method. The starting point is an
explicit non-linear formulation of dynamics, such as that presented in Brasil and Mazzilli (1993) and
Mazzilli (1994) for planar frames. In most of the paper content, the approach will be illustrated for planar
frames. Yet, they have a much broader application.

It will be assumed that both the deformed static equilibrium configuration and the non-linear modal
displacement field, expressed in the form of power series of the modal variables, are available for the finite-
element model under investigation. The (several) original generalised coordinates are then expressed as
their equilibrium values plus the non-linear displacement field, which depends on (few) selected modal
variables. Modal variables are still to be determined by means of time integration of the fully non-linear
reduced equations of motion. The procedure developed is able to automatically render the reduced
equations of motion, i.e., the reduced matrices of mass, inertial damping and stiffness, and also the
equivalent applied load vector.

The elemental inertia, damping and elastic force vectors defined in the local system are then written in
terms of the selected modal variables and their derivatives. Next, the elemental force vectors are trans-
formed onto the global system, still keeping their original ranks. Reduction is then performed at element
level, by pre-multiplication by the transpose of the non-linear modal matrix, as it is typical of the con-
ventional mode superposition method. The reduced elemental force vectors are, of course, non-linearly
dependent of the modal variables and their time derivatives. The overall system reduced force vectors are
now easily obtained after direct summation of the corresponding elemental vectors. More concisely, the
reduction can be performed at the element local systems, provided that the non-linear modes are trans-
formed from the global onto the local systems.

The generated few-degree-of-freedom non-linear system can then be studied with the well established
techniques of applied mechanics. The associated reduced system will serve to guide the relevant numerical
essays, which should be finally performed for the original finite-element model.

Although the reduction technique is applicable both to free or forced-vibration problems, the numerical
examples in this paper will consider only the former situation.

2. The equations of motion

The equations of motion used in this paper result from the finite-element formulation of non-linear
dynamics of planar frames presented in Brasil and Mazzilli (1993), based on Bernoulli-Euler beam theory.

Fig. 1 shows how the six degrees of freedom of the element are numbered in the local coordinate system
Oxy. In what follows, ¢ is the length of the element, 4 and I are, respectively, its cross-sectional area and
moment of inertia, p is the mass density and E is the Young modulus. In this formulation, a concentrated
mass M, with rotational inertia /, can be included at position x = Xx.

In the local system, the equations of motion of an isolated single element are

n_/lrsés"’—arxqq'i_ﬂr:ﬁv I",S:L...,6, (1)
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Fig. 1. Definition of degrees-of-freedom in the local system.

where 7,,, d,, and #,, r,s = 1,...,6 represent, respectively, the elements of the mass matrix, the damping
matrix and the elastic force vector components. For free vibrations, the applied nodal force vector com-
ponents £, are null.

As demonstrated in Brasil and Mazzilli (1993), the elements of the mass matrix are determined by

my, = my, + (Vi + V), + (6 + 0)q.4,, 2)

where
4
ity = pd [ 0)5) 4 0,00, 00)] e + 1 / V() dx + My [, (£)9,(5) + b, (), ()]
0
+ Iy, (X)W (%), 3)

the shape functions being

¥ (x) =0, (f’l(x):l—%y

Yo(x) =1~ 3x +2/3» $5(x) =0,

lp3()€) X = 2Y ;2 ’ ¢3()C) = 07

W4(X) =0, , \ ¢4(x) = %7 (4)

b =35 25 do =0,

Ye(x) = =%+ 7%, $e(x) = 0.
The other coefficients in Eq. (2) are calculated using

¢

= [ 90608, 05)d + Mogh ()5, 5. (5)

= o [ BB, )+ Mo, (9, ). (6)

%= ol [ W ) ™)
where

Biy(e) =G (0) = o), ®)

e / e 9)
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Note that, in Eq. (2), m%, r,s =1,...,6 are the elements of the constant mass matrix used in linear
dynamics, including the effect of concentrated mass and rotational inertia. Besides the usual longitudinal
displacement interpolation of linear theory, geometrical non-linearities are introduced under the hypothesis
of invariance of axial force inside the finite element.

The damping matrix elements are determined by

ds = Wy + Viséi + (Uilv + TZ')éiCji’ (10)

where u,, r,s = 1,...,6 are the damping matrix elements used in linear dynamics, whose expression de-
pends on the kind of damping considered; the remaining terms have inertial origin.
Finally, the elastic force vector can be written as

i, = iy g, + (55, + 03,) 4, + 304,44, (1)

where
¢
if, = EAL9, ¢ + EI / V() (x) i, (12)
0
oL, = EAQ o, (1), (13)
;  EA

O = = 0t (€)ous (£). (14)

Eq. (12) shows that &’, r,s = 1,...,6 are the elements of the classical stiffness matrix.

After assemblage of the equations corresponding to individual elements, the equations of motion for the
entire structure subjected to dynamic excitation can be written as

A/[lj(p)pj+Dl/(pﬂp)pj+ l],(p) :FOi +E(t)7 la]: 17 -, n, (15)

where F, and F(¢) stand for the static and dynamic loading, respectively.
The equilibrium configuration p, is the solution of

Ul(p()) :Kij(po)POj:Fbi, L,j=1,...,n, (16)
where K;;(p,) is an element of the secant stiffness matrix.
Let p* be
P =p—P (17)

The equations of motion can be re-written for p* as
[My(po + )] 5} + [Dys(po + p°, 071D + [Kis(po + P)] (2o + 7)) = For + F(0), ij=1,....n.  (18)
For free vibrations about the equilibrium configuration, it follows that
M (po, P*)P; + Dj(Po: P*, P)P] + K(Pos )P} =0, i, j=1,....n. (19)
When vibrations are considered about the undeformed configuration, Egs. (18) and (19) simplify to
M (p)p; + D007 )p; + Ky () =0, ij=1,....n, (20)

where
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Mt(l)*) - M(; + Ml/kplt + Mii’klpzpjv

Djy(p", ") = Dy + Dy + Dyyupip] (1)
Ki(p") = Kjj + Kiypj + Koupii

D>

0 gl g2 o —
> Kijs Kijps Kijggs 157,k 1 =1,..., n are constants.

M2, D, D!

0 sl
and M;;, My, Mi,, Dj;, Dy,

ij° ijk>

3. Non-linear normal modes

Non-linear normal modes were originally defined as synchronous motions exhibited by non-linear au-
tonomous systems in which there are fixed, usually non-linear, relations between generalised coordinates
Rosenberg (1966). In that sense, the classical normal modes of linear systems, for which these relations are
linear, represent a particular case of a more general concept.

Shaw and Pierre (1993) proposed a new definition based on geometrical properties of a modal solution
trajectory in the system phase space. By noticing that, during a modal motion of a linear system with n
degrees-of-freedom, this trajectory is confined to a two-dimensional plane surface in R>", they redefined a
normal mode as a motion which takes place on a two-dimensional invariant manifold in the system phase
space. This definition applies to weakly non-linear oscillatory systems as well, and is equally suited to non-
conservative problems.

During such a motion, every generalised displacement or velocity can be written as a function of two of
them, under certain non-degeneracy conditions. In the non-linear case, the invariant manifolds may be
slightly curved; as a consequence, the functions relating generalised displacements and velocities during
modal motions may be non-linear.

Consider a non-linear system with n degrees-of-freedom py, . .., p, governed by the first-order equations
of motion:
Di = Wi,
! . (22)
Wi:gi(pl7'"7pnawl7"'>wn)7 l:17"'7n7
where g;, i = 1,...,n are analytical functions such that
g(0,...,0,0,...,0)=0, i=1,...,n (23)

Suppose that, when linearised about the equilibrium position (p,w) = 0, the system has distinct pairs of
complex conjugate eigenvalues and eigenvectors, typical of an oscillatory behaviour.

We expect to find n two-dimensional invariant manifolds in the system phase space, each of them as-
sociated with a particular normal mode and, consequently, with a set of functions relating all generalised
coordinates and velocities to two of them. If we choose p;, and w; as independent variables and denote them
by Y and Z, respectively, the modal relations we are looking for may be expressed as

pi(t) = R(Y(1), Z(1))

L (24)
wi(t) = W(Y(1),Z(t)), i=1,...,n,
where P, W;, i =1,...,n are supposed to be analytical functions. It is easy to see that, in particular,
P(Y,Z)=7, W(Y,Z)="Z. (25)

The substitution of Eq. (24) into Eq. (22) leads to
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oP, oP,

_Z+_gk(Pla"'7PnaI/Vla"'aan):VViv

O O P P W) = @(Prses s P Wi W), = 1

oY ang LyewoosLny Wiy ooy Wy) = &ill1y o ooy Ly Wiy ooy Wi )y r1=1,...,n

which is a non-linear system of partial differential equations having, as unknowns, the modal relations.
Each solution to this system geometrically describes one of the invariant manifolds.

In most cases, it is impossible to find out the exact solutions of Eq. (26), and a power series approxi-
mation is needed. Consider the first-order equations of motion written as cubic expansions, by means of

&Py s PasWi, -, Wy) = Byp; + Cyw; + Ejjpipm + FjmpWim + GijwW Wi + HijupDiPmDp
+ LijmpPiPmWp + NijmpP W Wp + RijmpWjWin Wp, (27)

where Bj;, Cij, Eijm, Fijm, Gijms Hijmps Lijmps Nijmp and Ry, are known coefficients and i, j,m,p = 1,...,n. The
approximate modal relations are also written in polynomial form:

P(Y,Z) = ayY + ayZ + ax Y’ + ayYZ + a2’ + ag Y’ + a Y’ Z + ay YZ* + ay 2,
Wi(Y,Z) = by;Y + byZ 4 by, Y* + by YZ + bs;Z* + b Y + by, Y*Z + by, YZ* + boZ°, i=1,...,n,
(28)

where a;;, by, j=1,...,9, i=1,...,n are constants to be determined.

After substituting Eqgs. (28) and (27) in Eq. (26), and collecting terms of equal order in Y and Z in the
resulting polynomial equations, a large system of non-linear algebraic equations having the coefficients a;;,
bi,j=1,...,9, i=1,...,nas unknowns is constructed. There must be # different solutions to this system,
corresponding to the n distinct invariant manifolds. It is possible to show (Shaw and Pierre, 1993) that these
equations can be ordered in such a manner that, instead of solving them all at once, we can solve a much
smaller system of non-linear algebraic equations having as unknowns just the coefficients of the linear terms
in the modal relations; after that, two linear systems are constructed and solved, one for the coefficients of
quadratic terms and the other for the coefficients of cubic terms.

In fact, the solution to the first (non-linear) system of algebraic equations can be avoided (Soares and
Mazzilli, 1999). The unknown coefficients ay;, as;, by;, bs;, i = 1,...,n describe a two-dimensional planar
surface in the phase space which is tangent to the corresponding curved invariant manifold at the equi-
librium point; this planar surface coincides with the invariant manifold of the linearised system, thus related
to the eigenvectors of the mode of interest. Hence, the linear part of the modal relations can be alternatively
generated from the solution to an eigenvalue problem.

In this paper, the invariant manifold approach was adopted to generate the non-linear modes used in the
proposed reduction technique. The pioneering implementation described in Soares and Mazzilli (1999) is
capable of generating non-linear normal modes of finite-element models. It was applied to systems (20) and
(21), which assumes free vibrations about the undeformed configuration. This assumption is acceptable for
a great number of cases, such as those of Section 6.

The system of n second-order equations had to be transformed into a system of 2n first-order equations
like Eq. (22). In the theory, this can be accomplished by simply solving Eq. (20) in terms of the accelerations
and expanding the result in power series. However, the operation involves a symbolic inversion of the non-
constant mass matrix, and this is not feasible in practice.

Again, we can find an approximate solution to this problem by using the Taylor series. Substituting the
desired expanded form (27) of the equations of motion (22) into the second-order system (20) and equating
coefficients of like powers of p; and w; = p;, we arrive at a system of linear algebraic equations having as
unknowns the coefficients B;;, Cij, Eijmy, Fijms Gijm> Hijmps Lijmp> Nijmp a0d Rijup (@, j,m,p =1,... 1),
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Once known a particular set of modal relations (28), the dynamics on the corresponding invariant
manifold can be generated by substituting them in the kth pair of equations of motion (22), considering
expansion (27), and solving the resulting modal oscillator, generally non-linear, to obtain Y (¢) and Z(¢).

4. Non-linear modal displacements

The equations of motion for a scleronomic Lagrangian system such as that discussed in Section 2 may be
written, in matrix form, as

M(p)p + D(p,p)p + U(p) = F, (29)

where M is the secant matrix of mass, D, the secant matrix of equivalent damping, U, the elastic force
vector, F, the generalised applied force vector and p, the generalised coordinate (displacement) vector.

Let p, be the displacement vector for the deformed equilibrium configuration, determined from a non-
linear static analysis, if necessary. The rth component of the displacement vector is given by

pr=po+ &Py, N, Y,..) Y, suminu=1273,..., (30)

where Y, stands for the uth modal variable, which is a new generalised coordinate, and £!(py, 11, 1>, . ..) the
non-linear function of the modal variables associated with the rth displacement component and the uth mode.
Note that £ represents the displacement content of the non-linear mode w. It is assumed that the velocity
content of the non-linear mode u is of little relevance and therefore, it has not been taken into account in
the current reduction technique version. Section 6 is concerned with the validation of the procedure as a
whole, including this hypothesis. It is further supposed that these functions £ can be defined by power
series of the modal variables:

& (Pos Y15 Yoy 2) = & (Py) + & (P0) Yo + &7 (o) Voo + - (31)
Taking Eq. (30) into account, it is possible to write for the displacement increment vector component,
8p, = 8EY, + £8Y,. (32)
As a consequence of Eq. (31), one may re-write
op, = ®15Y,, (33)
where
P = OV + DY, + DY Y+ (34)
and
o= m.
=g, (35)

uvw __ zuvw vuw wou
¢r - Cr + 5r + 5r .

The functions ¢! will be termed here as the non-linear function of the modal variables associated with the rth
displacement-increment component of the uth mode. It is assumed that such non-linear functions are known.
Once each one of ¢! is known, £ is also known using Eq. (35) and vice versa.

It should be observed that the non-linear modal displacement fields, introduced as above, must be ki-
nematically admissible and have embedded in themselves, the usual linear modes about the deformed
configuration, determined in a classical eigenvalue problem.

It will not be necessarily required here the uncoupling of non-linear terms, as it is implied in the defi-
nition of non-linear normal modes (Shaw and Pierre, 1993). In fact, if non-linear multimodes should
be considered, e.g. when internal resonance conditions apply and non-linear normal modes cannot be



2000 C.E.N. Mazzilli et al. | International Journal of Solids and Structures 38 (2001) 1993-2008

determined, the reduction technique will still be able to handle the associated modal variable couplings,
provided such multimodes are supplied.

5. The reduction technique

The procedure allows one to automatically obtain the reduced equations of motion for the structural
system:

M* (Y)Y + D*(Y, Y)Y + U"(Y,Y,Y) = F*, (36)
where M™ and D™ are, respectively, the reduced secant matrices of mass and equivalent damping, and U™
and F™ are, respectively, the reduced elastic and applied load vectors.

At the finite-clement level, the corresponding matrices and vectors are explicitly known. In particular,
Section 2 supplies the mass matrix m, the equivalent secant damping matrix d and the elastic force vector @
in the local system for the Bernoulli-Euler rod finite element. They are defined by non-linear functions of
the element local system displacement and velocity vectors (q and ). It should also be noted that the u
vector components are evaluated as the partial derivatives of the strain energy with respect to the com-
ponents of the displacement vector q.

Elemental matrices and vectors in the local system will then be re-written in terms of the selected modal
variables and their time derivatives, making use of the rotation matrix T and the matrix {, which is the
partition of & associated with the particular finite element under consideration. In fact, it is known that the
element displacement vector in the global system is given by

q=q,+ Y, (37)

where q, stands for the equilibrium configuration displacement vector. In the local system, the corre-
sponding equation will read

q=7q,+ Y, (38)
where

4 — Tq,.

b= "o (39)

{=T¢L

It is therefore possible to express the elemental matrices and vectors in the local system in terms of the
modal variables, provided an explicit formulation such as that of Brasil and Mazzilli (1993) is at reach. We
thus write for each element

m(q) = m(g, +{Y) = m*(Y),

d(a,) = d(go + Y, Y +0V) = d'(Y, V), (40)
u(q) = u(q, + {Y) = a'(Y),

where the time derivatives of the { functions, up to quadratic terms, are

fo= 0t (G E) o,

S o N _ N (41)
C}u _ C;lle + (Cflrw + C7W1>YLYW + (Csz 4 g:wL) Yva
Elemental force vectors are then evaluated in terms of the selected modal variables:
m(q)g = m (Y)Y + 20Y + Y),
(@)q (Y)(¢ (Y +(Y) )

d(q,4)d = d°(Y, V) (Y + £Y).
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Next, elemental force vectors are transformed onto the global system, by pre-multiplication by the
transpose of the rotation matrix T, still keeping their original rank:

T'm(q)§ = T (Y)Y + 20V + &Y),

T'd(q, @)d = T4 (Y, V)Y + V), @)
T'a(q) = T'&"(Y),
" = T'f",

where f* and f* stand for the elemental applied force vectors in the global and local systems, respectively.
Reduction is then executed for each element, by pre-multiplication of each vector in the global system by
the transpose of the “modal’” matrix, as it is typical of the conventional mode superposition method. In
fact, let F, be any force of the original global equation of motion and Fy be the associated force of the
reduced equation of motion. The virtual work 67" produced should be equal for both forces. Hence,

3" = 8q'Fy = 8Y'Fy. (44)
By taking into account that
8q = ¢ Y, (45)

where ¢ is the partition of @& associated with the particular finite element under consideration, it is
straightforward that the reduced force must be given by

Fy = ¢'F,. (46)
One may thus re-arrange the elemental reduced equations in the form

m” (Y)Y +d™(Y, Y)Y +u™(Y,Y,Y) = £, (47)
where

m”(Y) = ¢'T'm"(Y)(,
d™ (Y, Y) = ¢"T'[d" (Y, Y){ + 2m° (Y
u” (Y, Y,Y) = ¢'T'{u" + [m"(Y )5 d'(Y ( )}YL
f**( ) — ¢IT f*.

The resulting matrices and vectors are then added for all elements to render the overall structure reduced
matrices and vectors M™, D**, U and F**, as desired:

ME(Y) = 3 me ()
D”(Y,Y) = i:d**(y Y),
U*(Y,Y,Y) = Zu**YYY

F(Y Zf**

Alternatively, the reduction can be performed directly in the element local systems, provided that the
non-linear ¢ functions are expressed in the local systems themselves, i.e.

¢ =To. (50)

In such a case, one may also evaluate m**, d*, u** and f according to

(49)
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m(Y) = §'m’ ()L,
4 (Y, ¥) = (v, V)L 2w (V)] (s1)
w (Y, Y, ¥) = ¢+ e (V) (Y, VY
r(Y) = ot

The reduced equation of motion for planar frames about the equilibrium configuration for mode y can be
shown to be of the form

A, + AV, Y, + A™Y, Y, Y, + BUY, + BV, Y, + BV, Y, + BV, Y, Y, + BV, LY, + C'Y,
+ C"Y,Y, + C™Y,Y,Y, = AD, + D'Y, + D"Y,Y,, 2

where the coefficients are evaluated after summation over all finite elements Their explicit expressions in
terms of the g, and { components and the finite-element coefficients 7%, v, ¢, 1/, pi and 07 defined in
Section 2 are too lengthy to show here.

rs?

6. Validation tests in non-linear free vibration

Although the technique is able to supply a reduced model under generic dynamical loading, this section
will be devoted to problems of free vibration. Even in free vibration, there are validation tests which may be
proposed to allow for the quality assessment of the reduced model. In fact, one might think of re-generating
the non-linear modes, once the reduced model is available, for later comparison with the very non-linear
modes which were used to define the reduced model itself. In other words, the previously discussed pro-
cedure for non-linear mode determination can be applied to the set of differential equations describing the
reduced model and the results compared with the original modes. If the relevant non-linear modes have
actually been kept in the reduced model, one could expect a good correlation. Sometimes, the equations
which stand for the dynamics of the modal oscillators in their respective invariant manifolds show some
differences, when we compare them term by term. Yet, if their responses (e.g. the frequency—amplitude
relationships) agree well, they may be acceptable. In other cases, major discrepancies indicate the inade-
quacy of the reduced model, inasmuch as other modes still not considered should be taken into account. It
is then necessary to re-define the reduced model, using more modes, and re-assess the regenerated non-
linear modes until good correlation is achieved.

Two examples are considered next, for which conclusions regarding the quality of the reduced models
are drawn. To give an idea of the processing time for a reduction of a 39 degree-of-freedom model to one of
three degrees-of-freedom, roughly 2 h is required in a well configured PC, running a symbolic computation
code. For the sake of simplicity, in these examples, the equilibrium configuration was considered to be
approximately coincident with the undeformed configuration (i.e. p, = 0).

6.1. Portal frame

The portal frame of Fig. 2 has been studied as a finite-element model of 14 members and 39 active
degrees of freedom. Its first five non-linear modes have been determined, following the procedure described
before. Non-linear normal modes were evaluated using the program modon! (Soares and Mazzilli, 1999). To
perform model reduction, only the first two modes (Figs. 3 and 4) were initially considered. It comes out
from the reduction technique that the resulting two non-linear differential equations are coupled, in spite of
the original non-linear modes being orthogonal. When the regenerated modes are determined, the modal-
oscillator equations obey the following general pattern:
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rf

> Py

M my, M

4m

} 3m } 3m }

Fig. 2. Portal frame characteristics: £ = 2.0317 x 10" N/m?, p = 7800 kg/m?, 4 = 2.64 x 107 m?, [ =4.45x 10°° m*, m = 186 kg
and M = 140 kg.

4.5 q

-0.5 0.5 1.5 2.5 3.5 4.5 55

—»— undeformed - - & - - linear —&— modonl

Fig. 3. First mode of the portal frame.

Y +aY +bYY +eYY 4 cYYY +dYYY = 0. (53)

The frequency—amplitude relationship can be established using the multiple scales method and it is
approximately given by
w o
— =14 54
=1 g (54)

where o can be evaluated from the coefficients of the modal oscillator equation:
_ A 2
v=a [b + bca + (ea) } —3c. (55)

The third non-linear mode (Fig. 5) was then taken into account to perform model reduction. The new
regenerated non-linear modes were determined from the corresponding set of three differential equations.
In what follows, particular interest is placed on the effect this third mode has on the first two regenerated
modes. Tables 1 and 2 allow direct comparison among the original and regenerated modes (for both re-
duced models).
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Fig. 5. Third mode of the portal frame.

The first regenerated mode, when only the first two modes were considered in the reduction technique,
does not agree well with its original description. Not only are the coefficients of the modal oscillator
equation in major disagreement (even with sign change for coefficient c), but also the frequency—amplitude
relationship displays a large deviation (4). For the same reduced model, the description of the second
regenerated mode is surprisingly good. When the third non-linear mode is introduced in the analysis, a
remarkable improvement is seen in the first regenerated mode, although the second regenerated mode does
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Table 1

Comparison among models for the first mode of the portal frame

Original model

Regenerated (2 dof)

Regenerated (3 dof)

a 4.42 x 10* 441 x 10% 4.40 x 10?
b —5.14 x 10~

e —5.71 x 107°

c —4.64 x 10 8.86 x 103 —4.52 x 10
o 139.101 —-26573.4 135.618
o/8a 0.0394 —7.5253 0.0385

A (%) ~19200 2

Table 2

Comparison among models for the second mode of the portal frame

Original model

Regenerated (2 dof)

Regenerated (3 dof)

a 341 x 10° 3.42 x 103 341 x 10°
b 9.72 x 10? 9.84 x 10? 9.86 x 10?
e 1.24 x 1072 7.40 x 1073 1.03 x 1072
c —9.85 x 107 -9.79 x 103 —1.38 x 103
o 3342.16 3322.85 4534.47
o/8a 0.1226 0.1215 0.1663

A (O 0) 1 36

experience some loss of quality. As a whole, even with this moderate worsening in the second mode, the new
description of the reduced model is considerably better than the previous one. This is especially so because,
from the qualitative viewpoint, the softening effect of the original modal oscillator equations is correctly
captured in the model of higher hierarchy. In addition, the 4 deviation for the second regenerated mode
affects a term which represents a small correction to the linear estimate of the frequency. It is expected that
the addition of the fourth mode would improve the second regenerated mode, without severely spoiling the
first one.

6.2. Clamped—clamped beam

The clamped-clamped beam of Fig. 6 has been studied as a finite-element model of 20 members and 56
active degrees of freedom. Only half beam has been considered due to model symmetry. Its first five
symmetric non-linear modes have been determined, following the procedure described before. In Fig. 7, the
first non-linear mode, as computed by modonl, is represented together with results available in the literature
(Bennouna and White, 1984; Benamar et al., 1991). To perform model reduction, only the first mode was
initially considered. When the regenerated mode is determined, the modal-oscillator equation is seen to
obey the following general pattern:

TYI N 20mm
N I 2mm

s

305mm ‘ 305mm
I |

Fig. 6. Clamped-clamped beam characteristics: £ = 7.33 x 10! N/m?, p = 2770 kg/m®.
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Vi +a¥y + e h Y +dnh vy = 0.

(56)

The frequency—amplitude relationship can be established using the multiple scales method and it is

approximately given by

w 3¢
— =144
Va + 8a

(57)

To assess the quality of the model with a single modal degree of freedom, another reduced model of
higher hierarchy was sought. The second symmetric non-linear mode, Fig. 8, was also used in the reduction
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0.0002 -

0.0000

v (m)

0.p0
-0.0002 -

-0.0004

-0.0006 J

T T T T T
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Fig. 8. Second symmetric mode of the clamped-clamped beam.
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Table 3
Comparison among models for the first mode of the clamped-clamped beam
Original model Regenerated (1 dof) Regenerated (2 dof)
a 31889 31889 31889
¢ 5.37 x 10° 5.46 x 10° 5.45 x 10°
d 34482 26638 26639
3¢/(8a) 63123 64179 64102
4 (%) 1.67 1.55

technique and its effect on the first modal oscillator equation was then assessed. Table 3 shows that the
improvement is not significant, as the 4 deviation with respect to the original modal oscillator equation,
which was already small, is not greatly reduced further.

7. Validation tests in non-linear forced vibration

Validation tests in non-linear forced vibration are still to be devised in more depth before they can be
performed. One possible strategy would be the comparison between the reduced model and the full finite-
element model, as far as the response results for specific situations are concerned. At this moment, such
tests have not been carried out, since a new version of the finite-element code based upon the same for-
mulation is being constructed at the Computational Mechanics Laboratory. Outputs of largely used finite-
element codes are not directly comparable to ours, as the non-linear formulations are not strictly the same.
It is expected that the proper orthogonal decomposition technique, or the Karhunen—Loeve method, may
be of considerable relevance in the quality assessment of reduced models, as it allows for the determination
of the energy content ratio in the selected modes.

8. Conclusions

The paper represents a contribution towards the automatic characterisation of reduced models in non-
linear dynamics, once full finite-element models of the structural system are available. For the time being
only planar frames can be tackled, although in many respects the procedures discussed here are applicable
to other structural systems. It is a pioneer research work, as the non-linear modal analysis and the reduction
technique are applied to systems of distributed properties discretised by the finite-element method.

A remarkable feature of the reduction technique is that it was devised to be performed finite element by
finite element, as opposed to manipulating the full model. Further, matrix operations may be carried out in
the finite-element local system.

The reduction technique usually leads to coupled equations, even though the non-linear singular modes
used as input are orthogonal, therefore allowing for assessing modal interaction under specific dynamic
excitation conditions.

Under internal resonance conditions, non-linear singular modes are not properly defined and multi-
modes should be determined to be used as input for the reduction technique.
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